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Abstract

The slow dynamics of topological solitons in ti&@* o-model, known as lumps, can be approxi-
mated by the geodesic flow of te& metric on certain moduli spaces of holomorphic maps. In the
present work, we consider the dynamics of lumps on an infinite flat cylinder, and we show that in this
case the approximation can be formulated naturally in terms of regélaleKmetrics. We prove that
these metrics are incomplete exactly in the multilump (interacting) case. The metric for two-lumps
can be computed in closed form on certain totally geodesic submanifolds using elliptic integrals;
particular geodesics are determined and discussed in terms of the dynamics of interacting lumps.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many field theories possess topological solitons as classical solutions, and the study of
their dynamics has long been an important research topic in mathematical physics. Exact
results for this problem have only been obtained for rather special (integrable) models in
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1+ 1 dimensions; more generally, one has to resort to approximations based on truncations
of the field theories to finite-dimensional configuration spaces of collective coordinates.
One such scheme is the adiabatic approximation, first proposed by Manton in the context
of BPS monopole§l]. It has been applied to extract detailed information about the slow
dynamics of solitons in a number of models ir2, 1+ 3 and more dimensions (notably
gauged Ginzburg-Landau vorticgs3] and Yang—Mills—Higgs monopoldd,5]) and is
believed to work well for a large class of field theories exhibiting self-duality.

One neat example of a self-dual field theory is the nonlieearodel withCP? target
on a Riemann surfacE. This is the dynamical system for maps

WY — CP!

described by the wave equation associated to a specific iemannian mefranatthe usual
round metric on the two-sphe€&P?. Topological solitons in this model, usually referred to
as lumps, will typically arise i is compact or effectively compactified by suitable bound-
ary conditions. Static solutions are harmonic maps, with energy given by the usual Dirichlet
integral. In the adiabatic approximation, one constructs another dynamical system whose
configuration space consists of the static solutions of minimal energy, the dynamics being
defined by restricting the action functional of the original field theory. This space is stratified
by homotopy classes, and the strata are usually referred to as the moduli spacesCEor the
o-model, the Dirichlet energy is minimized exactly by the holomorphic or antiholomorphic
maps within each homotopy class, labelled by the Brouwer degee& of W. The mod-
uli spaces (if non-empty) then have the structure of finite-dimensional complex varieties
[6], and the adiabatic dynamics is geodesic motion with respect to a metric on them. The
Cauchy—Riemann equation, a first-order PDE, replaces the second-order static equations of
motion as a description of the fields. This is the essential common feature to all self-dual the-
ories. In the adiabatic programme, the moduli spaces are often smooth manifolds equipped
with natural geometric structures (symplectic forms, metrics of special holonomy) that turn
out to be interesting objects by themselves. In some instances, they have even been used to
probe aspects of the quantum field theories underlying the original mddé&ls

The CP! o-model has applications to the physics of ferromagnets and as a high-energy
effective model for vortices; however, its main interest has been as a toy-model displaying
many of the features of more important field theories with gauge symmetry. The adiabatic ap-
proach to this model was firstinvestigated by Ward for the gaseR? in [10]; he found that
the approximation s ill-defined, in the sense that the metric is infinite along certain directions
thatappear as frozen degrees of freedom. One way to regularise the metric is to place the vor-
tices on a compact surface, and this was studied by Speight ®iesspher§l1] or atorus
[12]. It has also been found that the metric #6r= R? regularises once a self-gravitating
interaction is included in the lagrangigb3]. Determining these metrics in closed form
is in general beyond reach, but some explicit formulae have been obtained in a number of
nontrivial cases, namely for one-lumps Bn= $2 [11] and for certain totally geodesic sub-
manifolds of two-lumps oiR? [10] and on the particular toru8/(Z & iZ) [12]. Geodesic
incompleteness of the moduli spaces was provédtldh There is also a general belief that
the relevant metrics should beiKler[15,16] this has been rigorised fof = 52, and for
¥ =T? andn = 2 [17]. The accuracy of the adiabatic approximation has been studied
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recently by Haskins and Speidh8] in the spirit of work by Stuaift3,5] on the gauge theory
models.

In this paper, the adiabatic dynamics@P* lumps is studied in some detail for the case
where X' is an infinite cylinder. We can say that this is an intermediate case between the
situationsY’ = C andX compact considered by previous authors. In the former, the metrics
are ill-defined but explicit calculations of the metric are possible, whereas in the latter the
metrics are regular but extremely hard to compute; the cylinder turns out to combine the
advantages of both. So our study complements the existing literature in a setting that is
unifying in some way, and our results will reflect this. Let us summarise how this paper is
organised. We us8ection 2to fix the basic notation. Ii$ection 3 we obtain elementary
properties of the moduli spaces; we formulate the adiabatic approximation in terms of
regular riemannian metrics, which are shown to l#hler. InSection 4 we discuss the
isometries of these metrics. The one-lump sector is studiSgdation 5We then establish
that all the multilump metrics are incomplete $ection 6 In Section 7 we address the
two-lump dynamics and derive more explicit results about the metric, its geodesics and
curvature properties. Finally, we discuss our resultSéotion 8

2. TheCP! ¢-model on a cylinder
For the rest of the paper, we shall taketo be the infinite cylinder

Y =C/(2ri7Z)

with local complex coordinates= x + iy and metric
ds2. = dx? + dy? (1)

induced from the euclidean metric of its universal cazer
The action for theCP* o-model, whose objects are differentiable maps ~ — CP*
dependent on timg is given by

1w] = /R(T —V)dr )

with kinetic and potential energies

WZ
r=2f O dus, ©
(14 1wP?)
W%+ 9zW|?
V=4 %du;. 4)
(14 |WPR)

We shall only consider the dynamics of mafy$or which the potential energy above is
finite. We represent/ by means of an inhomogeneous coordinate taking valués.ijoo}
following usual practice; overdots denote time derivatives gng & the measure ox’
associated t@l). The variational principle yields the wave equation as equation of motion,
and static solutions are harmonic maps framdg3) to (CP*, ds%,). Here, d?, is the
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riemannian metric oft P! regarded as a two-sphere of unit radius; thghkr (1 1)-form

of this metric will be denoted bwg.. Following an argument first presented by Belavin
and Polyako{19] (but already observed in a more general setting in the mathematical
literature—cf.[20], p. 374), we write for a map/ : ¥ — CP*

Dy i 0,)W|? . W2+ awz
O<2/|(x i dy) | M2_4/| |© + [0z W] /W(wsz)
(1+ W2 b (1+|W|

= V[W] T deg(¥) VoI(5?),

where degW) is the Brouwer degree of the map. In the inequality above, it is useful to take
the top signs if: := deg() is nonnegative, and the bottom signs otherwise. Then we learn
that

VIW] = 4r|n|,

which implies that: € Z providedV is finite. Moreover, we deduce that the potential (or
Dirichlet) energy(4) is minimized to 4r|n| on each topological class by a solution of the
Cauchy—Riemann equation

W =0 (5)

if n>0,0rd,W =0if n < 0. To simplify our discussion, we will mostly be considering
the caser > 0 only, but all the statements can be easily adapted to thé case.

In this paper, we shall be concerned exclusively with the adiabatic approximation to
the dynamicg2). This takes place in the space of holomorphic maps f®no CP?, i.e.
meromorphic functions o&'. They are completely characterised by the following lemma.

Lemma2.1. Any meromorphic functiow : ¥ — CP!ofdegree: € Z factorises uniquely
as

W =W oexp

whereexp : ¥ — CP! is given byexpk) = € and W : CP* — CP! is a rational map of
degreen

Proof. Any meromorphic mapVon X' can be regarded as a meromorphic magarf pe-

riod 27i. We first claim that there is a unique meromorphic miap CP! — {0, oo} — CP*

such that¥(z) = W(€°). This is true because— € is invertible inC modulo integer mul-

tiples of 27i, and this ambiguity does not change the valu#¢f); thatW is meromorphic

(and thus a rational map) follows from— € being holomorphic and the inverse function
theorem in one complex variable. Since exp has degree one and the degree is multiplicative
with respect to compositiony has degree. Finally, W can be extended to a meromorphic
map W : CP* — CP! in a unique way: it cannot have essential singularities at 8opr

for then the (strong version of the) big Picard theorem[@f], p. 210) would contradict
nez. O
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Fig. 1. The pinched torus.
A meromorphic (or antimeromophic) map @rof degree: € Z will be called am-lump.
Lumps withn < O are sometimes calleghtilumps

Corollary 2.2. For any lumpW : ¥ — CP?, the limits
L2(W) = |Iim W(x+iy)
x—£00

are well defined as points of the Riemann sphere.

Proof. The mapW : CP! — CP! determined fromW by Lemma 2.1is continuous, so
this follows from the existence df_(exp)= 0 and{,(exp)=oco. O

We shall callt_ (W) and ¢4 (W) theendpointof W. It is easy to see that the existence
of endpoints is a necessary condition for the Dirichlet enéypf any mapz — CP* to
be finite.

Remark 2.3. Lumps with¢ (W) = ¢_(W) can be interpreted as meromorphic functions
on the pinched torus depictedfig. 1—an elliptic curve with a nodal singularity and flat
metric (1). So the results that we shall obtain below for such maps can also be interpreted
in the context of th&P! o-model defined on this singular space.

3. Moduli spaces of lumps

The moduli space of-lumps will be denoted byM,,. By Lemma 2.1anyW € M, can
be written as

where

n n
A(w) = chwn_k, B(w) = Zc;z+k+1wn_k (7)
k=0 k=0

(6)
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are complex polynomials with no common roots, and suchdhandcy, 1 are not both
equal to zero. These conditions are expressed algebraically by the nonvanishing of the
resultant ofA andB,

CO Cl DR Cn
€0 - Cp-1 Cn
co c1 - Cp
8(co, ..., con+1) := Res@, B) = . (8)

Cn+l Cp+t2 *+° C2n41
Cn+l - C2n C2n41

Cn+l Cn42 "' C2n41

Notice that the polynomial& andB are not uniquely determined frowi, but subject to the
ambiguity of simultaneous multiplication by an element®f. Thus we can regardA,
as a subset dfP?*+1 through the injection that maps adump W given by(6) and(7) to
the point

[coicri- - icomea] € Cpl,
The image of this map is the complement of the hypersurface of degrekassociated to
the homogeneous polynomiain (8),

V(@) ={[co: - cata] € CP"* 2 8(co, ... cy) = O},

and is therefore an open subset in the Zariski topology®#' ™. So we have shown:
Proposition 3.1. M,, is a smooth complex quasiprojective variety of dimension
dimg M, =2n + 1.
Let CP% denote the diagonal i@P* x CP. For our purposes, it will be useful to give
the following description of the moduli spaces:
Proposition 3.2. There exists a morphism far> 0
¢: M, — CP* x CP! (9)

whereby? = (¢_, £,) associates to each lump its endpointsyfor 1, this is a fibration by
smooth irreducible closed subvarieties/ef, with complex dimension2— 1. Moreover,

¢: My — CP! x CP! — CP} is an algebraic principal fibre bundle with structure group
Cx*.

Proof. We definel as the restriction of the rational maP?'+1 — CP! x CP* given
by

[co: -t conta] = ([en * c2nyls [co t cntal). (10)
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On the complement of the hypersurfagés), (c,+1, co) and ¢2,+1, ¢,) are never equal
to (O, 0); thus(10) is regular onM,, = CP" — V(8), and ¢ is a morphism of algebraic
varieties.

The fibre of¢ over (p, ¢) = ([po : p1l. [qo0 : g1]) is obtained by intersecting,, with
the algebraic subset GfP?*** defined by the homogeneous polynomials

PoC2n+1 — P1cn  @Nd  gocu41 — qaco.

Since these polynomials are linear in different variables and nonzero, it is clear that

Clco, . . ., c2n41)(poc2n+1 — P1cn, ocn+1 — q1€0)

is isomorphic to the ring of complex polynomials im 2 1 variables, whose homoge-
neous maximal spectrum@P?' 1. If n > 1, it straightforward to verify that thi§P%'—*
intersects)(s) transversely independently op(¢), and this shows that all the fibres are
irreducible, smooth and of dimension 2 1.

Forn = 1, itis easily checked thatbelongs to the ideal

(Poc2n+1 — p1cn, qocn+1 — q1co)

exactly whenp = ¢, so that the range dfin this case is the complement of the diagonal
CPL. To show that : M; — CP! x CP! — CP} is a principal fibre bundle, we start by
pointing out that the identification of one-lumps with rational m@fid — CP* of degree
one given byLemma 2.lendowsM with an algebraic group structure, namely

Mi = PGLC.

More precisely, we identify one-lumps withdbius transformations ab = €°. The sub-
group generated by rotations and dilations is isomorphi€to and it is an easy task to
verify that the quotient map

PGL,C — PGL,C/C*

can be identified witlf. O

The pre-image ofg, g) € CP* x CP* under the map considered ifProposition 3. 2will
be denoted by\(79); we shall also writeM? := M0, The adiabatic approximation
consists of endowing each of these spaces with a riemannian mend studying its
geodesic flow, which is a dynamical system bfy, by automorphisms of the fibratioh
The geodesics on the fibres can be interpreted physically as a slow motion of lumps of
degreen preserving the endpoints labelling the fibre. Physically, it makes sense to constrain
the motion of the endpoints because we know that in the model it costs an infinite amount
of energy to move them, which is not available to a lump that starts moving with a finite
velocity.
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The metricy on eachM (7% is obtained from the kinetic enerd®) of the o-model.
This means that, ifx (k = 1 ,2n — 1) are local complex coordinates fon (P, y =
yi7d¢; dz; is defined such that

T= %Viﬂ({l ,,,,, tan-1)5iC ;- (11)
Here we allow the;, regarded as parameters specifyiigto depend on time and ap-
ply the chain rule. Geometrically, can be interpreted as the restriction of themetric
on the infinite-dimensional manifold of smooth mags @s%) — (CP*, ds2,) to a finite-
dimensional submanifold of holomorphic maps with suitable boundary conditions. Thus
givenW ¢ ./\/t,(fﬂ) and two vectors, Y of the tangent space

TwMPD = (X e HO(z, w*(T®OCPY) : Nim Xy =0=lim Xlery ),
— —00 - X—>+00
the metric alVis evaluated as
D) = [ (W dd)x. ) ds 12)
b))
whenever this integral exists. The main result of this section is the following:

Theorem 3.3. The riemannian metrig onM,(f*q) relevant for the adiabatic approximation
is regular forn > 1. Moreover, it is a Khler metric with respect to the complex structure
induced byM (-9 s CPZ1+1,

Proof. Since we still have the freedom of choosing the inhomogeneous coordinate on the
CP* target, we may assume without loss of generality that0. This means that we can
restrict our attention to mapW for which c¢g # 0. This condition defines an affine piece of
CP?+1 where
=% k=1..2141 (13)

co
are good complex coordinates. New= 0 implies¢,+1 = 0 on M?¥. There is one more
redundant coordinate ai? among(13), and it can be eliminated through the equation

poSan+1 — p1én =0, (14)
wherep =: [po : p1]- Suppose first thapg # 0 holds, so thaty,,1 can be eliminated.
Then a magV € MP can be expressed as
ZZ;]J:Kk+iz+le(nik)Z + pén

1 4 i g el Rz

where we writep = p1/po. (If n = 1, the sum in the numerator should be ignored and
p # 0.) According to(11), the components of the metric in these coordinates can be read
off as

/ / 4 avT/d | 2_/ 1 oW oW dwadw
=2 -
N (1+|W|2)2 o g, o T Je@+ WPR2 g 0ty wl?

(16)

W(z) = (15)
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where the indices run from 1 ta:2and we have used the change of varialies €°. After
differentiating(15), it is not hard to check that the integrand(it6) (with respect to the
euclidean measure/Q)dw A dw) is a rational function ofv andw, with the only singularity
occurring atw = 0 and being of the fornd(jw|~1) as|w| — 0, and with the asymptotic
behaviourO(jw|~3) as|w| — co. So we conclude that the integral {b6) is finite for alli
andj, which means that the metrjcis regular.

To show that the metric is &ler, we start by observing that it is hermitian with respect
to the complex structure associated to the coordinates

vij = Vii-

The closure of the corresponding, ()-form can then be seen to be equivalent to the
conditions

Wij _ Wi

= , Lj=12....n,n+2,...,2n.
0Lk a¢; /

For these to hold, it is sufficient that integration and differentiation with respegtrimay
be interchanged ifly;7/9¢, But this follows from a standard result on Lebesgue integration
of differentiable maps (cf. e.g22], p. 226) once we observe that the integral

/ 9 1 9Wow) dwndw
21 —_— =5 - —_——
cs \ (L+ W22 9g; 9¢; |wl|?

exists and is finite by an argument analogous to the one used to establish regularity of
It remains to address the cgeg= 0, i.e.p = co. Then we necessarily hayg # 0 and
(14)yields¢, = 0. AmapW € M:° is now expressed as

_ ZZ:1§k+il+le(n_k)z
e 1 Sl

(where the sum in the denominator should be ignored=f 1). The rest of the argument
follows essentially unchanged from the cage# 0 above. [

W(2) a7

4. Isometries of M,

Our major goal is to compute explicitly the metrigsdescribing the slow motion of
lumps in some special situations and interpret their geodesics. Not surprisingly, a central
part of this study is concerned with the exploration of isometries, to which we shall now
turn. In this sectionn will not necessarily be taken as nonnegative.

Recall thaty is determined from both the metric@ on spaceX and the metric SIEZ on
the target, cf(12). These have isometry groups

Iso(X) = V4 x C* (18)
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and
Is0(S?) = O(3) = Zy x SO(3)

whereV, denotes the Vierergrup® & Z;. They act on these spaces as follows. The factor
C* of Iso(X) refers to the translation group of the cylinder,

T, .z~ z—logr, XeC*,

whereas the Vierergruppe is generated by any two of the three transformations

01:7H —2Z, (19)
027 2, (20)
037+ —2, (21)

which also define the semidirect product(it8). Notice that bothr; ando, reverse the
orientation ofX, whereasr3 preserves the orientation. On the target, the proper rotations
in SO(3) can be represented in terms aildilis transformations of the coordinaéby
aW — ,E
BW +a’
and we can take a reflection across any great circle as the generatoZpffttor, say

R:W > la|? + |B% # 0, (22)

o W W.

It is natural to expect isometries oMﬁl”*Q), y) to be produced from the induced action of
Iso(X) x I1s0($?) on C*®(x, CPY):

(g, h) 1 W(z) — h(W(g2(2), (g h) € lso(X) x 1so(5?).

In general, these transformations do not preserve the spaé’é@, butitis straightforward
to show from the representati¢h2) that they still act isometrically as follows:

T, = (T, id) : MPD) — M9 e CX
o1 = (o1, id) : MPD) M(:jl;p)

02 = (02, id) : MPD) M(_pr,lq)

03 = (03, id) : M’({",q) N Mglq,p)

R=(id, R) : M) - MEPKD) R e SO(3)
o= (id,o): M}gp,q) N M(_U’Eq),a(p)).

The next proposition shows how these isometries can be used to simplify the study of the
metricsy.
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Proposition 4.1. Each fibre of¢ : M,, — CP! x CP! is isometric to a fibre of the form
Mﬁll yvith p €10, oo]_ c R. Mor_eover, the isometry groupiso(M?) of these spaces always
contain a subgroup isomorphic to

V4 x C*;

if n > 1, Iso(M?%) contains a subgroup isomorphic (&4 x C*) x SO(2) if p =0 or
p = 00.

Proof. Consider the fibrev1{7-4) of ¢ over arbitrary §', ¢'). If n < 0, we can use> to
map it isometrically tol\/ll(,fl’q ). If q' # 0, we then use the transformation

W —q

1+4gwW

O Wk

(to be read asV — —W1if ¢ = c0) to map it to a fibre of the form\/lf,z,‘(”/). Finally, if
0(p") € [0, o], we use a rotatio — €W by 9 = — arg(Q(p’)). The composition of
these isometries then takﬁ&ﬁ[’/’q/) to M’;l for somep € [0, co].

To prove the second part, we start by recalling from above that the translatidhgret
serve eactM?, so thatC* C Iso(M?). Thisis not the case for the transformations induced
by the generators dfs C Iso(X), but they can be combined with target transformations to

produces; € Iso(M?) from thes; € Iso(X) in (19)«21). Specifically, we take
01.:=Rooooy

52 =0 002, (23)
63:= Roog, (24)
whereR € SO(3) is defined by

w if p=0,
W — .
R: Wi l—l—pII/)V if 0<p<oo, (25)

-w1 if p=occ.

Itis clear that the proper rotations of the target giving rise to isometridd Himust fix the

set{0, p}, so they are eithdRin (25) (leading toss above) or an element of Stab Stab,,

and this groupis trivial for 0< p < oo and SO(2) fop = 0 andp = co. However, the case

n = 1is exceptional: we necessarily hgwet 0, and in the case gf = oo target rotations
about the endpoints act as translations (by an imaginary quantity) on the whole fibre, so
they do not lead to new isometries. Finally, the target reflections have to be combined with
o1 Or oy to produce a degree-preserving transformation, so no more isometries arise from
them. O
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The proof above also shows that no further isometries\df ( ) can be constructed by
combining space and target isometries.

We now state a fundamental lemma relating isometries of a riemannian manifold and its
totally geodesic submanifolds; these are the submanifolds whose geodesics (in the induced
metric) are also geodesics of the ambient metric[@3], p.132).

Lemma 4.2. LetS C Iso(M) be any set of isometries of a riemannian manifaif g),
and F C M the set of points that are fixed by all the elements of S. If F is a manifold, it is
a totally geodesic submanifold 6%, g).

This elementary result has been used rather crucially in studies of soliton dynamics,
in the case wheré" is taken to be a finite set (or the subgroup generated by it), but is
also true more generally; we include a proofAppendix A The main interest of totally
geodesic submanifolds in the context of soliton dynamics is of course that if their dimension
is small enough it may be possible to compute the restriction of the relevant metric to
them. The geodesics of such manifolds can sometimes be determined (in particular, they
already are geodesics if their dimensionis one), and they typically describe soliton scattering
processes for which the energy density has some degree of symmetry. This approach has
been exceptionally fruitful in the study of BPS monopoleRi(see[24] for an overview),
although in this context it is often more convenient to impose the relevant symmetries on
certain geometric objects parametrised by the same moduli spaces as the solutions of the
Bogomol’'nyi equations, rather than on the metrics directly.

Using the isometries ifProposition 4.1and Lemma 4.2 it is not hard to find non-
trivial totally geodesic submanifolds for the spaces(f{, ). For instance, if we take
S = {02} (cf. (23)) we find thatF is a subvariety of real dimensiom2- 1 if » = 2 and
p #0, orn > 2, whereas it has real dimension 4 foe= 2 and p = 0. Moreover, im-
ages of totally geodesic submanifolds under isometries are again totally geodesic sub-
manifolds. A much harder problem is to find totally geodesic submanifolds on which the
metric and its geodesics can be computed explicitly. We shall give examples of such in
Section 7.1

5. Degree-one lumps

Forn = 0, the moduli space is trivially a copy 6fP*; this follows fromLemma 2.1and
the fact that the only rational maps of degree zero are the constants. The:mdp —
CP! x CP! analogous tq9) is of course just the embedding of the diagoG&! . The
adiabatic dynamics as we have defined iSection 3is trivial in this degenerate case,
because the level sets bfare either empty or just one point. We regavth = CP! as a
moduli space of classical vacua.

The moduli space of one-lumps is potentially more interesting. Recall that we established
in Proposition 3.2hat M has the structure of a principal fibre bundle:

CX‘—>M|

|

CP! x CP* — CP} (26)
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It is easy to understand that this is just the complexification of the familiar description of a
two-sphere as a homogeneous space,

52 = SO(3YSO(2)

The fact that the diagonalP is absent from the range af means of course that
there is no one-lumW with ¢_(W) = ¢4 (W); in particular, one-lumps do not exist on
a pinched torus, cfRemark 2.3 This is also a feature of th&€P! o-model on a smooth
torus[12].

On each fibre’\/l(l‘"’q) = C* of (26), the structure group acts (transitively and freely) by
spatial translations, which we know to be isometries of the mgtiidollows from the local

isotropy of (1) that the metric on/\/l(lp ) is completely described by a constamfp, q).
By fixing a one-lumpWy € M(l”"’), we can introduce a global coordinates C* = X

and parametrise any oth@r M(lp ) as W(z) = Wo(z — ¢); if we definec locally by
¢ := log¢, we can write down the metric conveniently as

y = m(p, q) de dc.

This constantn(p, g) can be interpreted as the mass of a lump with endpgingnd

g, and adiabatic motion id\/l(lp’q) is just rigid motion onX with inertia given by this

constant.

It is straightforward to verify that two one-lumps with endpoipts g1 and p, g2 at
the same distane#p1, g1) = d(p2, g2) have the same shape, in the sense that their energy
densities € L2(¥, dux), given by

A W(R)1?
2= T weee

are related by a spatial translation. The possible shapes of one-lumps are classified through
d by the points of the interval ]0z]. It follows from these observations that on eab,’rf’q a
one-lump moves without altering its shape, and thgt, ¢g) can be expressed as a function
of d(p, q). InFig. 2, we plot the energy density profiles of one-lumps with different shapes.
Ford = n, the lump profile has circular symmetry, which is hardly surprising—it is readily
checked thaf27) is invariant under any global target rotati(2?), and we know from the
proof of Proposition 4.1that forn = 1 and antipodal endpoints a translationzdfy an
imaginary quantity is equivalent to a target rotation about the endpoints. When we decrease
d, the profile acquires a peak, which becomes more and more pronounced as the endpoints
approach each other.

In fact, we can show that even one-lumps of different shapes have the same mass in the
adiabatic approximation. This is just a special case of the following fact.

(27)

Proposition 5.1. The mass of any n-lump4sn. In particular, theL2 metric on/\/l(lp’q) is
y = 4r dcdc.
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(a)d=m (b)yd=2rn/3 (c) d=m/250

Fig. 2. One-lumps with different shapes: (ay/(z) =e%; (b) W(z) = v3/(2i€ +1); (c) W(z) =
tan@r/500)/(ie° + 1). The energy density profiles are plotted radially on top of a cylinder of unit radius for
|IRez| <5/2.

Proof. Let W be anyn-lump and introduce a coordinate= log¢, ¢ € C* as above. Ac-
cording to(16), the mass oW s then given by the integral

9 2
— d
3¢ I29))

’"‘/2(1+|W(z)|2)2 —o

. 4 ow
- 2’/,s(1+ WP (‘&(Z)

where we made use of the Bogomolinfgq. (5) to complete the potential
energy(4). O

2 aw

+ ’(,)Z—(Z)

2
) duy = V[W] = 4nn,

6. Incompleteness of multilump metrics

As we have seen, the adiabatic dynamics of one-lumps can be described as constant mo-
tion on the translation group df; the shape of the one-lump is fixed by the initial endpoints
and the dynamical moduli can be interpreted as a centre of mass 3-@rhowever, typical
dynamical processes will include relative motion determined by the interactions among
the individual solitons entwined within a given field configuration, and the metrics are
correspondingly more complicated. In this section, we shall establish an important property
of the multilump metrics, which accounts for the possiblity of lump collapse in finite time:

Theorem 6.1. For n > 2, the L? metric (12) on M,(f’q) is incomplete for anyp, q) €
CP! x CP2.

Proof. By Proposition 4.1we do not lose generality by takinge [0, co] andg = 0. Our
strategy will be to exhibit (for each > 2) particular pathg, : [a, 5[ C R — MPE such
that:

. ”fTLJ/p(l) ¢ ML
t—
® y, hasfinite length in the metrid 2).
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According to(16), the length ofy,, is given by

1/2
L(yy) = / ’ ( /C ?(w, t)d2w> dr, (28)

where

4 2

L+ |W,[2)2

1
lwl?

oW,

(29)

and we denote by > W,(w) the rational maCP* — CP* corresponding tg,(z). It is
convenient to consider three separate casep:)0; (i) 0 < p < oo; and (iii) p = co. In
each case, we choogg having future convenience in mind.

() p=0:
We defineyg on [1, +o0[ by

) 2w ~
yo(t) : w — m = Wy(w). (30)

Notice that, forz € [1, +oof, W, is a rational map of degree with the required
boundary condition$V;(0) = 0 = W,(00), thusyg is well defined. MoreovelV :=
lim,_, 100 W; is not a rational map:

0 ifw® #£ -1,
o ifw" = —1;

Woo (w) = {

so indeedy(r) leavesM® ast — +oo.
We now set to prove thag has finite length. This is given K28) with

4 |W1l?

d(w, t) = - .
WD) = PR wp

We denote b){wj}’}:l the set ofnth roots of—1, which are all the (simple) poles of
W1, and fixe €]0, (1/2) sin@r/n)[. It is now convenient to write

n

C B]_/S(O)—U;?ilBg(w_/) C_Bl/s(o) j=1 Bs(w_/)

and estimate each of the integrals separately. In the followihd@;p, etc. denote
positive constants (dependentoonly).
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Sincew — Wi(w)/w has modulus bounded aBy /. (0) — Uj?';lBs(wj) (say by a
constaniCop) independently of, we may write

4|W1)? o2
/ (1) < / %
B1/e(0)-U ; Be(w)) Be(0)-U%  Be(wj) 1MW

4Cc2, d?w 471CS
= AT A
Bl/e(o)

Similarly, w — w Wi (w) is also bounded in modulus fow| > 1/¢ (by Coo, say),

hence

4|W1|2 d? 4C2 d?w  4nC2
/ <p(-,z)</ AW / o dw_ 4rCo
C—B1/:(0) C-By.(0) wl C—By.(0) 1wl et

On B,(w;), the functionw — (w — wj)ﬁ/(w) has no poles or zeroes, so there is a
constaniC; > 1 satisfying

Cj_l < |(w— wj)W(w)| < Cj.

Therefore,

4 C2/lw—wi|?
/ (1) < 2/ S -’/JZ i - dw.
Be(w)) (L= &)2JB.(w)) (12 + (C; /1w — w,|?))
We now make the change of variable— v := tC;(w — w;) and estimate the right-
hand-side of the inequality above as follows:

4C% / 02 v 8rC? /fecf B djl
1= el Jpc P +1P — (1—e)2*fo  (w?+ 1)

8mC? /1+(teCj>2u -1,
0

T -0t w2
2

There are constants} andC}’ , such that the last expression above is bounded by

Cit™*+ Cr*logt.
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Putting together all the estimates above, we conclude that there is an overall constant

C such that the length gfy satisfies the inequality

o0
1
L(yo) < C/ ﬁ\/1+logtdt,
1

in which the right-hand-side is finite.

Before we proceed, we would like to remark that we defipgds a target scaling
of W1 € Mg in (30), and that any other choice &f; would lead (through scaling) to
a path inMg that would suit our purposes (¢fL4]). However, the scaling of a given
map within a fibreM? does not yield paths of finite lengthjf £ 0.

(i) 0<p<oo:

We now takey, with domain [}/2, 1[ and defined by

p(tw + 1)

Ao wy ey~ )

vp(t) tw—

Itis easy to check tha¥; € M? for eachr € [1/2, 1[. Now Wy ¢ M?P becauséV; is
a map of degree — 1.
The length ofy,, is given by(28), with

4p?|2tw + 12 + 12 |w — 1|22
(Jw — 12=2|w + t|2 + |tp|?|tw + 1]2)2°

d(w, 1) =

We fix nowe €]0, 1/2[ and write

/tp(-,t):</ +/ +/ ><1>(-,t).
C B:(0) JC—(B:(OUB:(-1))  JBe(-1)

The first integrals do not cause problems, as we can write for suitable conStants
andCs and allz € [1/2, 1]

/ D(-, 1) < / Cod?w = 76%Co
J B.(0) B.(0)

and

/ &(-, 1) < / Coo P _ Tl
C—(B.(UB.(~-1) Cc-B.0) lw|? (n —1)er=2

Ast — 1 however, the integral ove®.(—1) becomes unbounded, but we shall show
that the lengthL(y,) remains finite. We change variables @s— v := (1 — 1t
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(w + 1) and estimate

1—1) + 2m?
/ D(.1) < / C1|(2 ) + 21| i 2d2v
Be(-1) Bﬁ<0)(|v+1| + Coltv + 112

(1 -0+ 41— tlv] + 422 ,
< (C1 5 o5 d2v
B . (0) (Jv+ 12 + Ca|tv + 1]?)

1—1)2 44—t 412 |v|2
<C3/ ( )+(2 )|g|+ [v] o
B_: (0) (Iv]* + 1)

(1-19

/(=1 (1 — 1)2|v] 4 4(1 — 1)t|v|? + 42|v|3
= 27'[C3 2 2 d
0 (Ivl*+ 1)

|v]

(1—1)? g2
2 24 (1-12

= 21C3 {

1-1)
+2(1— 1) (afctaf"l i r 82€+ - f)z)

2 2 2
2 e+@0-0° &
2 ('Og @-02 2+ @-12
27C3lo 1+i 4rC3lo 1
< emC3log 1= 1) < 4nl3 gl—z’

where againCy, C2 and C3 are suitable constants dependentsoonly. Hence the
length ofy,, is bounded above by a finite quantity:

1 1\ V2
L(yp) < C/ (1+ Iog) dr. (32)
1/2 1—1¢
p=o00:
Finally, we define the path., with domain [1/2, 1] by

tw+1

m = Wy(w).

Voo(t) : w

Again, it is easy to check that this defines a path on the fl with W; having
degreen — 1. In the formula28) for the length ofy,, we now have

4w — w‘1|2

(lwi=tw + 112 + |rw + 12 |w| = +1)2”

D(w, t) =

The rest of the argument is completely analogous (if somewhat easier) to case (ii)
above, and we are again led to a finite boundif¢y..) identical to(31). O
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7. Dynamics of degree-two lumps

To have some insight on the nontrivial scattering of multilumps, and in particular how
the lump collapse established Tineorem 6.dJmay be realised, we may hope to compute
particular geodesics of the multilump metrics. This is a very difficult task, but in this section
we show that some results can be obtained in the simplest case @ lumps.

7.1. Symmetric two-lumps

Even forn = 2, dimg M5 = 6 is too large to render the computation of the total metric
feasible. We start by restricting our attention to a totally geodesic submanifold.

Lemma 7.1. The following are totally geodesic submanifolds for the metrics

A o . X 0
0] “O'_{ZHcosthrﬁ'aec ,,BE(C}CMZ
o € +a

(i) aoo.={zr—> ¢ ta .ae(C—{—l,l}}CMSo.

Proof. Part (i) follows from the direct application dfemma 4.2to the setS consisting
of the isometryg3 defined in(24), and using the parametrisati¢hs) for W € M5. Part
(ii) follows from the same argument (now usifg7) to expressh), combined with the
application of isometries of the for(z) — —W(z) and W(z) — W(—z) discussed in
Proposition 4.1 [

We shall now focus on the two casgs= 0 andoo separately.
7.11.p=0 B

The submanifoldZg in Lemma 7.1has real dimension four. Computing the restriction
of the metric to it is still too complicated, but we can achieve this in certain submanifolds

of codimension two. If they are totally geodesicii, they will also be in (M3, ).
We start by applying agaibemma 4.20 Zg with S consisting of the isometry

W(z) —» —W(z — im).
The fixed point set irEg is
Eo:={z > asech :a e C*} c MY,

which is a two-dimensional totally geodesic submanifold. The SO(2) isometry subgroup
of target rotations acts offp, and this implies that the restriction of the metric to this
submanifold is independent ¢f:= arga. It can be written as

Y|z = 1(@)(da® + a® dv?) (32)
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wherea := |a| and/(a) is given from(16) as

B T |sechz|?
I(a) _4[n /700 (17 o2 seche2)? dx dy. (33)

We shall now explain how to compute the intei8)in closed form. We introduce the
guantity

o 1 _ 2 =
Ja(a) = 21/(7 <1+a2|sechz|2 A(|sech| )) dz Adz

dependent ongegulator A, which we define to be an integrable functian [0, +oo[— R
with supp@) c [0, 1] such that/, (¢) above exists as a real number. Our aim will be to
computeJ, (a) for suitableA, and then determin&a) as

1d
@) = =5~ Ia(@). (34)

It should be noted that the value K&) is then independent of the regulator; more precisely,
it will become clear (cf(36) below) that/(a) as given by(34)is invariant under any of the
transformations

A(r) = A@r) +ra(r)

wherex is an element of.2([0, +oc[) supported on a subset of,[D].
To calculate/, (a), we start by changing variables using> u = secHz; this is a map
¥ — CP? of degree four, so we obtain

du A du

. 1
Iala) =2 /c <1+ 2lul A('“')> ulZlu — 1|

In terms of polar coordinatesandé for theu-plane,

© T do T dg
Ja(a) =4/ / +/
0 0 Vr24+1—2rcosd Jo ~/r2+ 1+ 2rcost
1 dr
=  _A i
x <1+a2r (r)) r

o 1 K(k(r))d
— 16 / 1 ay) K
0 1+ da?r r(r+1)
Here,K is Legendre’s complete elliptic integral of the first kind, and we have made use of
the standard formulas (289.00) and (291.00p#&], with

_ A

k(r) = 1

(35)
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To proceed, we change the variable of integration frcim

1K
Ty

wherebyk’ := +/1 — k2 as usual. This requires some care, si(8%) is not injective, but
can be inverted as

1-VI-K _ tor refoq] VK L e[ o]
r= =c r N r= == r , o0[.
14+ +/1—k2 1-V1-k% ¢

By making use of Landen’s transformation (cf. 26], p. 238)

2 1-K
K(k)y= ——K (),
1+, \1+k

we then arrive at

a 1_A@>mom. (36)
C

1
¢
J =16 —
ala) /0 (c—i—az 1+a2c+

At this stage, we choose the particular regulator

c+1 if 0<c<1,
Ac) = )
0 if ¢c>1,

and drop theA subscript in/, to obtain

1
“@Z_M¥A(aiﬂ+Li%>“d“' (37)

The integral above can be evaluated in closed form by making use of the following result,
which we prove inPAppendix B

Lemma 7.2. The integral

ot 1
ﬂﬁ:A Q+¢+1+m)m”% (38)

defines an analytic function 4, 4+oc[ which satisfies
%ﬂVL%% if 0<r<1,
%K(Ml—ri) it > 1.

Thus we can writ¢37) as

f(t) = (39)

J(a) = —164°%f(a?)
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and determine froni34) the conformal factor in the metri82) as
1(a) = 16f(a?) + 164> f'(a®)

8 E(V/1—d - K(V1—db) if0<a<1,

- a48; ' (40)
T 1(a2E(\/1 —a ¥ —a?K(V1-a?) ifa>1,
P

whereFE is Legendre’s complete elliptic integral of the second kind; here, we made use of

dK  E(k) — (1 - k?)K(k)
dk k(1 — k2)

Notice that the functiord is smooth on ]0oc[; we plot a section of its graph iRig. 3.
We now show that the conformal facté(a) given by (40) is, such thatZg can be
embedded in euclided®?®:

Lemma 7.3. The riemannian manifold&y with metric given byegs. (32) and (403an be
isometrically embedded iR® as a surface of revolution

Proof. A general surface of revolution iR? is described by an embedding (in cartesian
coordinates)

(a, ) — (au(a) cosd, au(a)sind, v(a)),

where? is a standard local coordinate on the circle and we &ake0. Under this map, the
euclidean metric oR? pulls back as

(u(a) + au'(@))? + V' (a)?) da® + a®u(a)? dv?.

I(a)
40
30
20

10

1 2 3 4 5a

Fig. 3. The conformal factak(a) for the metric onZj.
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In order for this to be the polar isothermal form (as in equafi@)) of a metric in two
dimensions, one must set the coefficient af équal tou(a)?, yielding

v(a) = / ’ v/ —s2u/(s)2 — s(u(s)2) ds + constant (41)

This determines a real function if and only if the condition

a(u'(@)? =< (u(@)?) (42)

is satisfied for alh. In our case of interest, we should take

u(a) =/ 1(a).

It is easy to check that'(a) < 0 for alla > 0 and(42) can be expressed as

4
9 iogrtay = ~2,
da a

which can be verified to hold far €10, +oo[. O

The embedded surface has cylindrical topology and provides a good picture of the ge-
ometry of Zp; we plot a section of it irfFig. 4, using the construction ibhemma 7.3

It follows from

) lirﬂoo(a\/l(a) =81 (43)

\

Z

NN

Z
Z

AN

AN

Fig. 4. The surfac&y embedded as a convex surface of revolutioRn
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that this surface is asymptotic to a cylinder of radit®r for largea. Moreover,
lim (av/1(a)) =0
a—0t

implies that it can be completed to a simply-connected surface by adding the single point at
a = 0. However, this completion fails to be smooth. One way to see this is to consider the
scalar curvature of the surface; it depends only:pand can be easily calculated in terms

of elliptic integrals from the formula (cf27])

1 d d
R(a) = —m& (ada log I(a)) .

We find that this is a positive function on,}@oco[, monotonically decreasing, and with
limits

lim R(a) = , lim R(a) =0;
Jim, (a) = +o0 Jim R(a)

a plot of R(a) is shown inFig. 5. ThusZy is asymptotically flat for large, which fits with
the asymptotics already mentioned. The unboundedness of the curvature 8implies
that the one-point completion is hot smooth at thestip 0. A rather surprising fact is that
this occurs even though the profile curves of the surfage—~ R3 approach the symmetry
axis at right angles:

. d(au(a)) _ 2JI@)2I(a) —al'(a)) =
fo=arcten IR “du) — "8 @@ —ar@y ~2

(hereu andv are as defined in the proof bémma 7.3. Now the limit(43)implies that, as
a — o0, tangents to the profile curves make an anglé,gf= 0 with the direction of the
symmetry axis. An elementary result on differential geometry of surfaces of revolution in

1 2 3 4 5a

Fig. 5. The scalar curvatu®(a) on Z.
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RR3 then allows us to compute the total curvatureZffrom (44) as
/ R = 27(sinfg — sinfy) = 27.
Eo

This result agrees with what one would obtain for any embedded surface of revolution in
R3 asymptotic to a cylinder at one end and smooth at the other end, by the theorem of
Gaul3—Bonnet.

Any meridian (given by equating to a constant) is a geodesic of the surfage It
follows from our proof ofTheorem 6.%hat the meridians are incomplete geodesics—any
point on them is at finite distance from the tip= 0. This can also be checked from the
explicit formulas(32) and (40). It is also easy to show that the integrand(41) never
vanishes, and this implies that none of the parallels (circles of corgtand geodesic (cf.

[28], p. 182). More general geodesics Bp are straightforward to find as an application of
Clairaut's theorem (cfi28], pp. 183-185).

712.p=00
The metric on the totally geodesic submanifdd, introduced inLemma 7.1can be
written as

Vg = Voa(e)|dal? (45)
where

@ 2./ lw — w12 dw A dw
Yoala) = 2i
«“ C (lw+al?+ |u)—1—i—oz|2)2 lw|?

Notice that the prefactoy,g diverges at the points = 1 and—1, where the degree of the
mapg — (€% 4+ /€ + «) jump to one. Notice also thgg,; depends on both the modulus
and the argument af, which makes the computation of the integral in closed form a more
difficult task. However, we can calculate some geodesigg@kven without performing
the integral.

Lemma 7.4. The intervalg] — oo, —1[, ] — 1, 1[, ]1, +oo[ andR in the complex plane
parametrised by are all geodesics of the metr{d5).

Proof. This follows again fronLemma 4.2 Invariance of the maps

€ +tau
e+ o

W(Z) = Eoo
with respect to the isometdp defined in(23) imposes the relation

o=q,

on &, this is the equation for the union of the three intervalsdo, —1[, ] — 1, 1] and
11, +oo[, which are therefore geodesics pfz,_ . Similarly, consideringR : w > w1,



N.M. Rona® / Journal of Geometry and Physics 54 (2005) 42—-76 67
invariance under the isometry

e+ a € +a
[ d —
e+« e 4q

TixoRooy:

leads to the constraint
o= —,

and this shows thaR is also a geodesic.]

The proof ofTheorem 6.1mplies that the geodesic segmentah, corresponding to
a € [1/2, 1] has finite length with respect to the metf#5), and the same is true for any
other piece of the intervals inbemma 7.4hat accumulates at= 1 or —1.

Analogously to the case oy above, we can prove that the scalar curvature of
Zo becomes unbounded in the neighbourhood of the points where the metric becomes
singular:

Lemma 7.5. The scalar curvatureR of &, satisfies

lim | R(e) = +oo.

a—+

Proof. We focus on the limite — +1 without loss of generality. Consider the paths
Yoou - [1/2, 1[— Eoo, With u in the unit circle ofC, given by

ut—u+2Lw+1

=W .
w(w + ut —u + 1) ()

Yoou(t) T w

These paths parametrise radial segments tendirg=tal. (Notice thaty., 1 coincides
with y. defined in the proof ofTheorem 6.1(iii).) An analogous argument to the one in
Theorem 6.1and which we shall not reproduce here, leads to the following estimate for
the curvature of eaci

3
— / @, (w, 1) d?w
ot Jo

2 ( /C @, (w, 1) d2w> v

1 (1—1)3
1—t (24 (1—1)?)?
" o 82+(1—1)2_ 82 1/2
a7 T Era_p
Here,®, (w, t) is again determined froeru’,(w) by (29) andC, denote positive constants

dependent om and on a fixeck €]0, 1/2[. Since the right-hand-side is strictly positive
whent — 17, the scalar curvature must be positive in some neighbourhoad-ofl

ku(t) =
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by a continuity argument. The inequality above also implies that the minimal curvature
becomes unbounded as> 17, and the result follows. (I

7.2. Two-lump scattering

Now that we have found some geodesics./otp, we can interpret them in terms of
soliton scattering by plotting the energy dengity) along them.

721.p=0
We have seen thaf is a surface of revolution. The meridians of this surface define a
one-parameter family of geodesics; one of them is

I'o:={z+ asechz : o €]0, +o0[}.

All the other meridians are related 1 through a fixed target rotation, under which the
energy density27) does not change, and therefore describe the same type of process. This
process can be interpreted as a frontal collision of two lumps as wdéstrease from alarge
value to zero; a plot of the energy densities is showFign 6. For largex, the configuration
can be roughly described as a superposition of two single lumps with SO(2) symmetry (thus
having antipodal endpoints) which are far apartoAtecreases, these lumps approach each
other (meaning that the regions of lar§eome closer together on the cylinder), and at
close distance the approximate SO(2) symmetry of the energy density breaks down. At this
stage, energy density peaks form over antipodal points of a circle transverse to the axis of
the cylinder; these peaks become more and more pronounced, with a singularity forming
in the limit« — 0. As we have seen, this is achieved in finite time, which is a symptom
of the incompleteness of the metric. This type of phenomenon is not surprising for the
CP! model; it has been reproduced in numerical studies of scattering lumps on the plane
[29].

Itis aconsequence of Clairaut’'s theorem that the geodesEgsather than the meridians
are complete and do not involve singular peaking. A simple way to understand them (cf.

Fig. 6. Frontal collision of a symmetric configuration of two-IumpsM‘g, corresponding to the geodedig.
Energy densities of lumps of the fori(z) = « sech are plotted on top of a cylinder of unit radius f&ez| < 4:
(@a=5;(b)a=2;(c)a=1; (d)a = 0.05.
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[11,12) is to interpret the geodesic flow dgy as the dynamics of a particle in,]8 oo[
with position-dependent magé:) and lagrangian

L = 31(a)a?® + p? Ueti(a),

where

Ueii(a) = (46)

1
2a21(a)’
Here, py = a2I(a)¥ is the (conserved) momentum conjugate to the cyclic coordifate
which can be interpreted as a coupling to the effective pote@®l We plot Uesi (@) in
Fig. 7 it is a monotonically decreasing function and has a horizontal asymptotélaiz)
asa — +o0, corresponding to the lim{@3). From the plot, it is immediately clear that the
complete geodesics &p, corresponding to taking,y # 0, describe reflection collisions.

In these processes, the peaking of the energy density as the lumps approach each other is
reversed at a certain instant, after which the lump separation grows to infinity. For instance,
the sequence (& (b) — (c) — (b) — (@) of configurations ifrig. 6represents snapshots

of one such reflection. Processes of this type are accompanied by a rotation of the overall
phase of the field configuration and are generic among the motions on the submagifold

7.22.p=00
The geodesics we have found.sis° give three qualitatively distinct two-lump motions:

e*Z
r,::{zH +“:aelj}, j=123
(S

with
I :=]1, +o0], I =iR, I3:=] —1,1].

Energy densities of the process described’bgre plotted irFFig. 8 We can say it consists
of a frontal collision of two peaked single lumps of the same shape along a longitudinal
(straight) line. At collision, the two peaks coalesce and develop a singularity over the
midpoint of their initial positions (local maxima &) in the limito — 1*.

The geodesid describes processes related to the decay of the two-Wifap= e~*

(whose energy density exhibits SO(2) symmetry) to peaked configurations that become sin-
gular in the limitse — 1*. Strictly speaking, this process alone is not of scattering nature
because it does not connect configurations of asymptotically well-separated maxima of en-
ergy density. Alternatively, one could interpret the geodesic as a tunneling of single-peaked
two-lumps through the cylinder, passing through the SO(2)-symmetric configuration. This
is illustrated inFig. 9.

Finally, the geodesi¢3 may be interpreted as a scattering process of two single lumps
with the same shape along longitudinal lines positioned antipodally on the cylinder; energy
densities are plotted iRig. 10 If the lumps travel past each other, there is again an instant
for which the energy density of the configuration has SO(2) symmetry, and after that each
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Fig. 7. The effective potentidles ().
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Fig. 8. Frontal collision of lumps, corresponding to the geodésiof M5°. Energy densities of lumps of the
form W(z) = (7% + «)/(€* + «) are plotted on a cylinder of unit radius fiRez| < 3: (@) = 5; (b)« = 2; (c)
oa=11.

(b)

Fig. 9. Tunneling of two-lumps through the cylinder, corresponding to the gealiesfc\5°. Energy densities of
lumps of the fornW(z) = (€7% + «)/(€* + «) are plotted on a cylinder of unitradius fiitez| < 3: (a)a = —0.95;
bB)ya=-1/3; (c)a =0; (d)a = 1/3; (€)a = 0.95.

individual lump continues its motion along the longitudinal line with no significant distortion
of shape.

8. Discussion

In this paper, we have considered the adiabatic approximation to the dynamics of
solitons in theCP! o-model on an infinite cylinde. As in previous studies of this
model on other surfaces, for each degree Z there is a smooth, finite-dimensional
moduli spaceM,, parametrising static solutions-{umps); in our case, this space is
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modelled on the space of rational mapB! — CP! and is therefore a complex man-
ifold. We have found that the approximation defines a dynamical system by automor-
phisms of a natural map : M, — CP! x CP! specifying the boundary values of the
fields. On each fibre, these automorphisms are defined by the geodesic flow Iof the
metric, which is regular and &hler. By means of this fibration, we avoid making refer-
ence to degenerate metrics ag[10]. Although our language could be adapted to deal
with lumps on the plane, in that case the boundary values of the fields alone are still not
enough to specify a sufficiently fine fibration of the moduli spaces to render the metrics
regular.

Lumps of degree one are characterised by a shape funttaking values in 0] (the
distance of their endpoints), together with a location (a poinfahd = 0 or a transversal
circle if d = 0) and a physically irrelevant global phase. Their adiabatic dynamics is trivial:
it reduces to uniform motion of their location on the cylinder with shape-independent
inertial mass. This is similar to th€P! o-model on the plane, where the only possible
adiabatic motion of one-lumps is also uniform motion along geodesics, i.e. straight lines
[10].

The dynamics of multilumps is more interesting to study. We established that all the
metrics for multilumps on the cylinder are incomplete. Again, this parallels an analogous
result for lumps on the plane, as put forward by Sadun and Speifftinncompleteness
of the metric translates into the possibility of lump collapse in finite time in the adiabatic
approximation. Using standard symmetry considerations, we have found totally geodesic
submanifolds for the metrics on two types of fibyel”?) = ¢=1({p, ¢}), namely forp = ¢
andp, g antipodal, and some geodesics on them. We have also found explicit formulae for
the metric on one two-dimensional totally geodesic submanifolggf= M(z”’p), which
involves elliptic integrals. This metric is incomplete, and the corresponding lump collapse
can be plotted with no difficultyRig. 6). Similarly, some of the geodesics we found for
p andg antipodal exhibit lump collapse (Figs. 8 and 9). It is still an unsettled question
how to interpret finite-time collapse (which is understood as a feature of the adiabatic
approximation) at the full field theory level. As the metric becomes singular, one may
expect the approximation to break down; on the other hand, numerical simulations of the

(a) (b) (c)

Fig. 10. Scattering of antipodal lumps, corresponding to the geodgsi€ M5°. Energy densities of lumps of
the formW(z) = (€% + «)/(€° + «) are plotted on a cylinder of unit radius fiRez| < 3: (a)a = 3i; (b) « = 0;
(€)a=-3i.
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field theory seem to support the claim that collapse in finite time should also occur in the
full dynamics. Another question is whether the dynamics is well defined beyond collapse.
A rather striking feature of the geodesics describing collapse that we found is that they all
have natural prolongations on the relevant moduli spaces; in particular, for the scattering
processes we described @, the whole reak-axis can be interpreted as a process

of double scattering at 90of two one-lumps approaching first along a generatrix of the
cylinder, then travelling along a transversal circle, and finally separating along the opposite
generatrix, which is very natural to expect from our intuition on (second-order) soliton
dynamics in two dimensions.

The scattering processes corresponding to the geodesics that we found explicitly turn out
to be rather unique when compared to previous results on other surfaces, a fact that is due
to the different topology of the cylinder. It should be expected that more generic geodesics
will give rise to more familiar processes, in particular the frontal scattering‘at8@®act,
we have found curves on the submanifdg which are close to geodesics (in the sense
that the Christoffel symbols related to transverse motion are small in some region) and that
describe processes of this type.

There is some belief that lump configurations at collapse are supressed at the quantum
level. Following Gibbons and Mantdi], the quantum-mechanical version of the adiabatic
dynamics should be based on a Shinger equation on eaom,(qu) using the covariant
laplacian of thel.2 metric, but as a correction one expects an effective potential term given
by the scalar curvature of the moduli spd86]. Accordingly, wavefunctions should be
given zero boundary values whenever the scalar curvature diverges. In our examples, we
found that the scalar curvatures®f and &, blow up as the boundary of the moduli space
is approached upon collapse [17], Speight also found a divergence of the scalar curvature
of the moduli space of one-lumps 64 preventing collapse, but our results directly refer to
the interacting case and therefore give more substantial support to the hope that the degree
of lumps should be conserved in the quantum field theory.
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Appendix A. Proof of Lemma 4.2

Totally geodesic submanifoldS c M can be characterised by the property that (the
continuation of) any geodesic of the ambient metric starting tangexitidl never leave
N. Suppose, for a contradiction, that there is a geodesfc- ¢, e[— M of M, such that

r(t)e F Vte]—g¢0] (A1)
and
r(t) ¢ F vt €]0, ¢l. (A.2)
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It follows from (A.1) that+'(0) € T,(0)F C T,0)M, and as such it can be regarded as an
equivalence class of paths througB) containing paths that lie entirely ¢h These paths
are fixed bys, so f,.(0)'(0) = +(0) for all f € S. Now (A.2) implies that for any €10, ¢[
there is at least one elemefte S, such thatf(r(7)) # r(f). Sincef € Iso(M), f o ris also

a solution to the equation of the geodesics gt ¢); it satisfies the Cauchy data

(7 2 1)(©) = r(0)
(7 oY@ =(0)

and is distinct fronr. This contradicts the Picard—Lindd#ltheorem ensuring uniqgueness
of solutions of ODEs. Hencke must be a totally geodesic submanifold.
Appendix B. Proof of Lemma 7.2

The fact thaf in (38)is analytic for positive real values dfollows from the (complex)
analyticity of the integrand as a functiontpthe integrability of the integrand as a function

of k and the Leibniz rule. To computg(r) in closed form, we use an argument based on
the idea thaf can be extended by analytic continuation to a neighbourhood of the set

{teC*:Ret>0, Ims> 0}

We start by rewriting

f(t)=/01< kot | 1ok )K(k)dk

k2—12  1—1%k2

1 k 1
= K (k) dk
/o (kz—t2+1—t2k2) ©

+1/l I K (k) dk;
tfo \k2—172  1—¢22 ’

here, the last two integrals must be interpreted as Cauchy principal values, which are easily
seen to exist. To evaluate their sum, we first Wick-rotateit, which leads to

/1 o Yk i/l k1 K (k) dk
0o \k2+1%  1+41%? tJo \k?+1t72  1+172%? ’

Each of the two terms above can be evaluated in closed form using the result (cf. formula
1.(5) in[31])

[ (e ) s ()
0o \k2+22 14 z%? V1122 \Vi+2)




74 N.M. Rona® / Journal of Geometry and Physics 54 (2005) 42—-76

This yields

1 1 i 1 1
K — - K . (B.1)
Vi+z \V1+2) tJ14+2 \JV1+7
We have to now undo the Wick rotation in the expression above to obtain the values
of f we are interested in. This must be done carefully, since the analytic continuation of
branches at the singular point= 1 and the square root branches at the origin. Recall that
K (k) can be represented as a hypergeometric series$ok @< 1 (cf. (900.00) in25]):

K (k) = ngl (; %; 1;k2) = gz ((2]2;'1)”) k2. (B.2)
Jj=0 |

(Here (22 — D! :=(2n — 1)(2n — 3)---1 and 1)!! :=1.) So the properties of the an-
alytic continuation ofK can be deduced from those of Gaufg. Following common
practice, we introduce a branch cut on the real axis from#do. OnC — [1, +o¢], K is
single-valued, and it commutes with complex conjugation,

K (k) = K(k), (B.3)

because the coefficients of the seriegBn2) are real. Across the branch cut, there is a
nontrivial monodromy that accounts for a discontinuity

1 1\ . [V =1
K(k):k<K<k>:|:zK< z )) k €]1, +o0f, (B.4)

where the top/bottom signs correspond to the limits obtained Wapproaches the cut from
above/below. This result can be obtained by relating Kummer’s solutions of hypergeometric
differential equations (cf32], Chapter 2). By a similar argument (af®13)), one can show

that

K (ik) ! K( ! ) keR (B.5)
k) = , . .

VI+k2 \V1+4k2

We now want to Wick-rotateback to—iz in (B.1); one way to keep track of the branching
of the functions involved is to substitute the findly €</2¢, with € smalll, real and positive,
evaluate in terms of continuous quantities andelet 0" at the end. It is convenient to
consider the cases@ 1 < 1andr > 1 separately. In the first case, we find that the argument
of the firstK in (B.1) after substution, (& €¢:2)~1/2, has positive imaginary part, and
according tqB.4) above we should then evaluate

1 — —7 —12)+i <t<
K(m) V1—2(K(V/1- ) +iK(), O<t<1

On the other hand, the second term(Bhl) is free from branching, and we can evaluate
using(B.3) and(B.5)

K <—l> =tV 2-1K(), O<t<1
p=

21
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In the case > 1, the argument of the firdt in (B.1) does not lie on the branch cut after
rotation, but the square root itself branches on the negative real half-axis, meaning that we
should take

1 i
= — + ,
V1 — geér? tW1—12

t>1

(where of course/- always denotes the principal branch of the square root); we then find
using(B.5)

i 1
k(=) - Vi-rk (7). o1
21 t

However, this time the secorid does branch; since & e~¢1~2)~1/2 has negative imagi-
nary part, we should take the lower sign(B14) and find

< (mbm) -V ()

Adding the two terms in each of the two cases @ < 1 andr > 1, we finally obtain the
result(39).
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